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Abstract. In this paper, the scattering of harmonic waves by two collinear symmetric cracks is studied by use of
non-local theory. To overcome the mathematical difficulties, a one-dimensional non-local kernel is used instead
of a two-dimensional one for the dynamic problem to obtain the stress occurring at the crack tips. The Fourier
transform is applied and a mixed boundary-value problem is formulated. The solutions are obtained by means
of the Schmidt method. This method is more exact and more appropriate than Eringen’s for solving this kind of
problem. Contrary to the classical elasticity solution, it is found that no stress singularity is present at the crack tip.
The non-local dynamic elastic solutions yield a finite hoop stress near the crack tip, thus allowing for a fracture
criterion based on the maximum dynamic stress hypothesis. The finite hoop stress at the crack tip depends on the
crack length, the lattice parameter and the circular frequency of the incident wave.
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1. Introduction

As is commonly known, one of the principal postulates of the traditional mechanics of con-
tinuous media is the principle of local action. This principle excludes action at a distance, and
attributes changes occurring at a point of the medium to thermoenergetic factors acting at the
point. Of necessity then, the classical theory, by restricting the response of the continuum to
strictly local actions, constitutes a so-called local theory. A familiar example is provided by
the conventional theory of elasticity, in which, when determining the stress at a point, one dis-
regards the deformation and the temperature fields outside an arbitrarily small neighborhood
at the point. However, the application of classical elasticity to micro-mechanics leads to some
physically unreasonable results. A singularity appearing in a stress field is a typical one; the
existence of stress singularities also results in difficulties in the development of experiments in
micro-mechanics. In fact, the stress at the crack tip is finite. As a result of this, beginning with
Griffith, all fracture criteria in practice today are based on other considerations, e.g. energy,
and the J -integral [1].

In contrast to this local approach of zero-range internal interactions, modern non-local
continuum mechanics, originated and developed in the last four decades, postulates that the
local state at a point is influenced by the action of all particles of the body. This was done
primarily by Edelen [2], Eringen [3], Green and Rivlin [4]. According to non-local theory, the
stress at a point X in a body depends not only on the strain at point X but also on that at all
other points of the body. This is different from classical theory. In classical theory, the stress at
a point X in a body depends only on the strain at point X. In reference [5], the basic theory of
non-local elasticity was stated with emphasis on the difference between the non-local theory
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and classical continuum mechanics. The basic idea of non-local elasticity is to establish a
relationship between macroscopic mechanical quantities and microscopic physical quantities
within the framework of continuum mechanics. The constitutive theory of non-local elasticity
has been developed widely [2], where the microstructures of the material have effect on the
elastic modulus. It has been found that the microstructures of the material have their effect, not
only on the constitutive equation, but also on the basic balance laws and boundary conditions
[6–7].

Other advances have been made by the application of non-local elasticity to fields such
as dislocation theory [8–9], solid defects [10–11] and fracture mechanics [12–13]. While the
literature on the fundamental aspects of non-local continuum mechanics is relatively exten-
sive, applications of the theory are not very numerous. The results, however, of those concrete
problems that were solved display a rather remarkable agreement with experimental evidence.
This can be used to predict the cohesive stress for various materials close to that obtained in
atomic lattice dynamics [14–15]. Likewise, a non-local study of the secondary flow of viscous
fluid in a pipe furnishes a streamline pattern similar to that obtained experimentally by Niku-
radze [16]. Other examples of the effectiveness of the non-local approach are: (i) prediction
of the dispersive character of elastic waves demonstrated experimentally (and lacking in the
classical theory) [17] and (ii) calculation of the velocity of short Love waves whose non-local
estimates agree better with seismological observations than the local ones [18]. Various of
non-local theories have been formulated to address strain-gradient and size effects (see, for
example, Forest [19]).

Recently, the non-local theory has been used to study fracture problems in piezoelectric
materials [20–21]. In [22–25] the state of stress near the tip of a sharp line crack in an elastic
plate subjected to uniform tension, in-plane shear and anti-plane shear were discussed. The
field equations employed for the solution of these problems are those of the theory of non-
local elasticity. The solutions gave finite stress at the crack tips, thus resolving a fundamental
problem that has remained unsolved for over half a century. This enabled us to employ the
maximum-stress hypothesis to deal with fracture problems and the composite-materials prob-
lem in a natural way. However, they were not exact and there is oscillatory stress near the crack
tip [22]. The iteration error has a significant effect on the result [23–25], because the second
Fredholm integral equation has a super-singularity integral kernel. To overcome the difficulty,
the Schmidt method [26] will be used. As discussed in [27–32], the Schmidt method can be
used to solve this kind of triple (dual) integral equation and the limit of the kernel does not
tend to a constant. Recently, the same problems that were defined in [22–25] were tackled
in [27–29] by means of the Schmidt method and the results are more accurate than those of
Eringen [22-25]. In [30-32] the dynamic crack problems were investigated by use of non-local
theory. To the best of authors’ knowledge, analytical treatment of the transient problem of two
I-cracks by using non-local theory has not been attempted.

For the above-mentioned reasons, the present paper deals with the dynamic problem of
two collinear cracks in an elastic plate by use of non-local theory. The field equations of
non-local elasticity theory are employed to formulate and solve this problem. To obtain the
theoretical solution, a one-dimensional non-local kernel function is used instead of a two-
dimensional kernel function for the anti-plane dynamic problem to obtain the stress occurring
at the crack tips. To further simplify our analysis, the same assumptions as Nowinski’s [18, 33]
are made in this paper. Certainly, the assumption should be further investigated to satisfy the
realistic condition. The Fourier-transform technology is applied and a mixed-boundary-value
problem is formulated. Then a set of triple integral equations is solved by a new method,
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namely, the Schmidt method [26]. In solving the equations, the crack-surface displacement
is expanded in a series of Jacobi polynomials. The Schmidt method is used to obtain the
solutions. This process is quite different from those adopted in Eringen’s work [22–25] and
overcome the mathematical difficulties experienced therein. The solution in this paper is more
accurate and more appropriate than Eringen’s. The solution, as expected, does not contain
the stress singularity near the crack tips. The stress along the crack line depends not only on
the crack length, but also on the lattice parameter and the circular frequency of the incident
wave. However, the stress resulting from classical theory depends only on crack length and
the circular frequency of the incident wave.

2. Basic equations of non-local elasticity

According to non-local theory, the stress at a point X in a body depends not only on the
strain at point X, but also on those at all other points of the body. This observation is in
accordance with atomic theory of lattice dynamics and experimental observation of phonon
dispersion [34]. Basic equations of linear, homogeneous, isotropic, non-local elastic solids,
with vanishing body force are

τkl,k = ρül , (1)

τkl =
∫
V

α(
∣∣X′ − X

∣∣)σkl(X′, t) dV (X′), (2)

where

σij (X
′, t) = λur,r (X

′, t)δij + µ[ui,j (X′, t)+ uj,i (X
′, t)], (i, j ∈ (1, 3)), (3)

where the only difference with classical theory is Equation (2); the stress τkl(X) at a point X
depends on the strains ekl(X

′) at all points of the body. For homogeneous and isotropic solids
there exist only two material constants; λ and µ are the Lame constants of classical elasticity,
ρ is the mass density of the material. α(

∣∣X′ −X
∣∣) is known as the influence function; it is a

function of the distance
∣∣X′ −X

∣∣. Expression (3) is the classical Hook’s law. Substitution of
Equation (3) in Equation (2) and use of the Green-Gauss theorem leads to∫

V

α(
∣∣X′ −X

∣∣)[(λ + µ)uk,kl(X
′, t)+ µul,kk(X

′, t)]dV (X′)

−
∫
∂V

α(
∣∣X′ −X

∣∣)σkl(X′, t)dak(X′) = ρül, (k, l ∈ (1, 3)) (4)

In this paper, we only consider the perturbation field. The surface integral at infinity is zero.

3. The crack model

It is assumed that there are two collinear symmetric cracks of length l = 1 − b along the
x-axis with the distance between the two cracks being 2b (see Figure 1.). For the problem
of two collinear symmetric cracks of arbitrary finite length l′ = c − b(c > b > 0), the
solution can easily be obtained by a simple change in the numerical values of the present
problem. In this paper, we only consider the two-dimensional plane strain problem. For the
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Figure 1. Incidence of a time-harmonic wave on two collinear symmetric cracks of the length l = 1 − b.

two-dimensional plane stress problem, λshould be replaced by λ∗ = 2µλ/(λ+ 2µ). Let ω be
the circular frequency of the incident wave; −τ0 is the magnitude of the incident wave. In what
follows, the time dependence term exp(−iωt) will be suppressed, which is a commonly used
technique. It is further assumed that the two faces of the crack do not come in contact during
vibrations as stated in Srivastava’s paper [35]. When the cracks are subjected to harmonic
elastic waves, as discussed in [35], the boundary conditions on the crack faces at y = 0 are (b
is a dimensionless variable):

τyx(x, 0, t) = 0, v(x, 0, t) = 0, |x| ≥ 1, |x| ≤ b, (5)

τyx(x, 0, t) = 0, τyy(x, 0, t) = −τ0, b < |x| < 1, (6)

u(x, y, t) = v(x, y, t) = 0 , (x2 + y2)1/2 → ∞, (7)

In this paper, the wave is vertically incident and we only consider positive τ0.

4. The triple integral equations

According to the boundary conditions, Equation (4) can be written as follow:∫ ∞

−∞

∫ ∞

−∞
α(
∣∣x′ − x

∣∣, ∣∣y′ − y
∣∣)[(λ + µ)uk,kj (x

′, y′, t)+ µuj,kk(x
′, y′, t)] dx′ dy′

−2{
−b∫

−1

+
1∫
b

}α(∣∣x′ − x
∣∣, |y|)[σ2j (x

′, 0, t)]dx′ = −ρω2uj , (i, j, k ∈ (1, 3)), (8)

where [σ2j (x, 0, t)] = σ2j (x, 0+, t)− σ2j (x, 0−, t) is a jump across the crack.
From [5] and [7], we obtain:[
σ2j (x, 0, t)

] = 0 for all x, (9)

Define the Fourier transform by the equations

f̄ (s) =
∫ ∞

−∞
f (x)e−isx dx, (10)
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f (x) = 1

2π

∫ ∞

−∞
f̄ (s)eisx ds, (11)

To solve the problem, the Fourier transform of Equation (8) with respect x can be given as
follows:∫ ∞

−∞
ᾱ(|s|, ∣∣y′ − y

∣∣)[µū,yy −(λ + 2µ)s2ū− is(λ + µ)v̄,y ] dy′ = −ω2ρū, (12)

∫ ∞

−∞
ᾱ(|s|, ∣∣y′ − y

∣∣)[−is(λ + µ)ū,y +(λ + 2µ)v̄,yy −s2µv̄] dy′ = −ω2ρv̄. (13)

What now remains is to solve the integrodifferential equations (12–13) for the functions u
and v. It is impossible to obtain a rigorous solution at the present stage. It seems obvious that
in the solution of such a problem we encounter serious if not unsurmountable mathematical
difficulties and will have to resort to an approximate procedure. In the given problem, accord-
ing to Nowinski [18, 33], the appropriate numerical procedure seems to follow naturally from
the hypothesis of the attenuating neighborhood underlying the theory of non-local continua.
According to this hypothesis, the influence of the particle of the body, on the thermoelectric
state at the particle under observation, diminishes fairly rapidly with increasing distance from
the particle. In classical theory, the function that characterizes particle interactions is the Dirac
delta function, since in this theory the actions are assumed to have zero range. In non-local
theories the intermolecular forces may be represented by a variety of functions as long as
their values decrease rapidly with distance. In the present study, as adequate functions it
was decided to select the terms, δn(y

′ − y), n = 1, 2,. . . , of the so-called δ-sequences. A
δ-sequence, as is generally known, is (in the present case) a one-dimensional Dirac delta
function, δ(y′ − y). With respect to the terms of the delta sequence the following simplifying
assumptions are adopted: (see [18, 33], Nowinski solved several non-local problems by using
this kind of assumption):

(a) : For a sufficiently large j (as compared with the sphere of interactions of the particles),
it is permissible to make the replacement∫ j

−j
f (y′)δn(y′ − y)dy′ ≈

∫ ∞

−∞
f (y′)δ(y′ − y)dy′, (14)

(b): As a consequence, the terms δn(y − y), with n〉〉1, acquire the shifting property of the
Dirac function,∫ j

−j
f (y′)δn(y′ − y)dy′ ≈ f (y), (15)

The influence function is sought in a separable form. So, according to the above discussion,
the non-local interaction in the y-direction can be ignored. In view of our assumptions, it can
be given as

ᾱ(|s| , ∣∣y′ − y
∣∣) = ᾱ0(s)δn(y

′ − y) (16)

From Equations (12) and (13), we have

ᾱ0(s)[µū,yy −(λ + 2µ)s2ū− is(λ + µ)v̄,y ] = −ω2ρū, (17)
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ᾱ0(s)[−is(λ + µ)ū,y +(λ + 2µ)v̄,yy −s2µv̄] = −ω2ρv̄, (18)

the solution of which does not present any difficulties; thus we have (y ≥ 0)

u(x, y, t) = − 2

π

∫ ∞

0
sA1(s) sin(sx) exp(−γ1y) ds

− 2

π

∫ ∞

0
γ2A2(s) sin(sx) exp(−γ2y) ds, (19)

v(x, y, t) = − 2

π

∫ ∞

0
γ1A1(s) cos(sx) exp(−γ1y) ds

− 2

π

∫ ∞

0
sA2(s) cos(sx) exp(−γ2y) ds, (20)

γ2
1 = s2 − ω2

c2
1ᾱ0(s)

, γ2
2 = s2 − ω2

c2
2ᾱ0(s)

, c1 =
√

λ + 2µ

ρ
, c2 =

√
µ

ρ
.

where A1(s) and A2(s) are unknown functions to be determined by the boundary conditions.
Now, let the function A(s) be defined such that the boundary condition τxy(x, 0) = 0 is

automatically satisfied:

A1(s) = − 1

2γ1
[s2 + γ2

2]ᾱ0(s)A(s), A2(s) = sᾱ0(s)A(s), (21)

Because of symmetry, it suffices to consider the problem in the first quadrant only. The
boundary conditions (5) and (6) can be applied to yield∫ ∞

0
A(s) cos(sx)ds = 0, x ≥ 1, x ≤ b, (22)

∫ ∞

0
ᾱ2

0(s)f (s)A(s) cos(sx) ds = τ0π

2µ
, b < x < 1. (23)

Equations (22) and (23) are the triple integral equations of this problem. In Equation (23),
f (s) is given as follows:

f (s) = 1

2γ1
{[s2 + γ2

2]2 − 4s2γ1γ2}. (24)

To determine the unknown function A(s), the triple integral equations (22–23) must be
solved.

5. Solution of the triple integral equation

Since the only difference between classical and non-local equations is in the introduction of
the function ᾱ2

0(s), it is logical to utilize the classical solution to convert the system (22–23)
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into an integral equation of the second kind that is generally better behaved. As discussed
in [25] and [33], we should take

α0 = χ0 exp(−(β/a)2(x′ − x)2) with χ0 = 1√
π
β
/
a, (25)

where β is a constant and a is the lattice parameter.
So we obtain

ᾱ0(s) = exp

(
− (sa)

2

(2β)2

)
, (26)

with ᾱ0(s) = 1 for the limit a → 0 (We consider the crystal as a lattice of regularly spaced
sites with lattice parameter a), so that Equations (22–23) reduce to the well-known triple
integral equations of the classical theory. The triple integral equations for the same problem in
classical fracture theory can be transformed into a Fredholm integral equation of the second
kind. However, the triple integral equations (22–23) can not be transformed into a Fredholm
integral equation of the second kind, because ᾱ2

0(s)f (s) does not tend to a constant C(C �=
0) for s → ∞. This can be explained as follows. In Eringen’s paper [25], the second-kind
Fredholm integral equation can be rewritten as follows

h(x)+
∫ 1

0
h(u)L(x, u) du = g(x),

where g(x) is a known function, and h(x) is an unknown function.
The kernel of the above second-kind Fredholm integral equation is divergent, which can

be written:

L(x, u) = (xu)
1
2

∫ ∞

0
tk(εt)J0(xt)J0(ut) dt , 0 ≤ x, u ≤ 1,

where Jn(x) is the Bessel function of order n.

k(εt) = −"(εt), "(z) = 2√
π

∫ z

0
exp(−t2)dt, J0(x) ≈

√
2

πx
cos(x − 1

4
π) for x � 0,

lim
t→∞ k(εt) �= 0 for ε = a

2βl
�= 0, (l is the length of the crack).

The limit of tk(εt)J0(xt)J0(ut) is not equal to zero for t → ∞. So the kernel L(x, u)
in [25] is divergent. Therefore, the results in Eringen’s paper are not appropriate. Of course,
the triple integral equations can be considered as a single integral equation of the first kind
with a discontinuous kernel [22]. It is well-known from the literature that integral equations
of the first kind are generally ill-posed in the sense of Hadamard, i.e. small perturbations of
the data can yield arbitrarily large changes in the solution. This makes the numerical solution
of such equations quite difficult. In this paper, the Schmidt method [26] is used to solve the
triple integral equations (22) and (23). The displacement v was represented by the following
series:

v =
∞∑
n=0

anP
( 1

2 ,
1
2 )

n

(
x − 1+b

2
1−b

2

)(
1 −

(
x − 1+b

2

)2

(
1−b

2

)2

) 1
2

, for b < x ≤ 1, y = 0, (27)
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v = 0, for x > 1, x < b, y = 0, (28)

where an are unknown coefficients to be determined and P (1/2,1/2)
n (x) is a Jacobi polynomial

[36, p. 1035]. The Fourier transformation of Equation (27) is [37, p. 38, p. 94]:

− ω2

2c2
2

A(s) = v̄(s, 0, t) =
∞∑
n=0

anBnGn(s)
1

s
Jn+1

(
s

1 − b

2

)
, (29)

Bn = 2
√

π
'(n+ 1 + 1

2)

n! , Gn(s) =


(−1)

n
2 cos

(
s 1+b

2

)
, n = 0, 2, 4, 6, ...

(−1)
n+1

2 sin
(
s 1+b

2

)
, n = 1, 3, 5, 7, ...

, (30)

where '(x) and Jn(x) are the Gamma and Bessel functions, respectively.
Substituting Equation (29) in Equations (22) and (23), we have that Equation (22) is

automatically satisfied; Equation (23) reduces to the form for b < x < 1

∞∑
n=0

anBn

∫ ∞

0
ᾱ2

0(s)Gn(s)f (s)
1

s
Jn+1

(
s

1 − b

2

)
cos(xs) ds = −τ0ω

2π

4µc2
2

, (31)

For large s, almost all the integrands of Equation (31) decrease exponentially. Hence they
can be evaluated numerically by the Filon method [38, pp. 105–123]. Thus Equation (31) can
be solved for coefficients an by the Schmidt method [26]. For brevity, Equation (31) can be
rewritten as

∞∑
n=0

anEn(x) = U(x), b < x < 1, (32)

where En(x) and U(x) are known functions and an are unknown coefficients. A set of func-
tions Pn(x) which satisfy the orthogonality condition

∫ 1

b

Pm(x)Pn(x)dx = Nnδmn, Nn =
∫ 1

b

P 2
n (x) dx, (33)

can be constructed from the function En(x) such that

Pn(x) =
n∑
i=0

Min

Mnn
Ei(x), (34)

where Mij is the cofactor of the element dij of Dn, which is defined as

Dn =




d00, d01, d02, . . . , d0n

d10, d11, d12, . . . , d1n

d20, d21, d22, . . . , d2n

. . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . .
dn0, dn1, dn2, . . . , dnn



, dij =

∫ 1

b

Ei(x)Ej (x) dx, (35)
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Table 1. Values of
9∑
n=0

anEn(x)

/
πτ0ω2

4µc2
2

and U(x)

/
πτ0ω2

4µc2
2

for

b = 0·1, a/(2β) = 0·0005, ω/c2 = 0·2.

x
9∑
n=0

anEn(x)

/
πτ0ω2

4µc2
2

U(x)

/
πτ0ω2

4µc2
2

0·1 −1·0080 −1·0
0·2 −1·0047 −1·0
0·3 −1·0200 −1·0
0·4 −1·0005 −1·0
0·5 −1·0597 −1·0
0·6 −1·0095 −1·0
0·7 −1·0034 −1·0
0·8 −1·0056 −1·0
0·9 −1·0078 −1·0

Using Equations (32–35), we obtain

an =
∞∑
j=n

qj
Mnj

Mjj
with qj = 1

Nj

∫ 1

b

U(x)Pj (x) dx. (36)

6. Numerical calculations

For a check of the accuracy, the values of
9∑
n=0

anEn(x) and U(x) are given in Table 1 for

b = 0·1, a/(2β) = 0·0005, ω/c2 = 0·2. In Table 2 the values of the coefficients an are given
for b = 0·1, a/(2β) = 0·0005, ω/c2 = 0·2.

From [27–32, 39] and the above discussion, it can be seen that the Schmidt method works
satisfactorily if the first ten terms of the infinite series of Equation (32) are retained. We can
determine the entire dynamic stress field from the coefficients an. It is of importance in fracture
mechanics to determine the dynamic stress τyy in the vicinity of the crack tips; τyy along the
crack line can be expressed as

τyy = 4µc2
2

ω2π

∞∑
n=0

anBn

∫ ∞

0
ᾱ2

0(s)Gn(s)f (s)
1

s
Jn+1(s

1 − b

2
) cos(sx) ds. (37)

From the above discussion, it can be deduced that the stress stays steady when the number
of terms in (37) is increased; the semi-infinite integration∫ ∞

0
ᾱ2

0(s)Gn(s)f (s)
1

s
Jn+1

(
s

1 − b

2

)
cos(sx) ds

and the series
∞∑
n=0

anBn

∫ ∞

0
ᾱ2

0(s)Gn(s)f (s)
1

s
Jn+1

(
s

1 − b

2

)
cos(sx) ds
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Table 2. Values of an

/
πτ0ω

2

4µc2
2

for a/(2β) = 0.0005, b = 0.1,

ω = 0.2

.

n an/(πτ0ω
2/4µc2

2)

Real part Imaginary part

0 −0·350516 × 10 −0·150300 × 10−1

1 0·158543 × 100 0·699877 × 10−3

2 −0·760875 × 10−1 −0·323144 × 10−4

3 0·395745 × 10−2 0·170345 × 10−4

4 −0·314711 × 10−2 −0·135059 × 10−5

5 0·266151 × 10−3 0·114774 × 10−5

6 −0·257682 × 10−4 −0·110740 × 10−6

7 0·236005 × 10−5 0·101800 × 10−7

8 −0·177895 × 10−5 −0·765896 × 10−7

9 0·160583 × 10−6 0·692765 × 10−8

Figure 2. The variation of the stress at the crack tips for a/(2β) = 0·0005, ω/c2 = 0·2.

Figure 3. The variation of the stress at the crack tips for a/(2β) = 0·0008, ω/c2 = 1·0.
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Figure 4. The variation of the stress at the crack tips for a/(2β) = 0·0008, b = 0·4.

Figure 5. The variation of the stress at the crack tips for a/(2β) = 0·0015, ω/c2 = 1·0.

Figure 6. The variation of the stress along the crack line for a/(2β) = 0·0005, b = 0·4.
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Figure 7. The variation of the stress along the crack line for a/(2β) = 0·0005, b = 0·1, ω/c2 = 0·2.

Figure 8. The variation of the stress along the crack line for a/(2β) = 0·0005, b = 0·4, ω/c2 = 0·2.

in Equation (37) are convergent for any variable x with a �= 0. Therefore the stress gives finite
values all along the crack line. Contrary to the classical-theory solution, it is found that no
stress singularity is present at the crack tip. For a = 0 at x = 1, b, we have classical stress
singularity. At b < x < 1, τyy/τ0 is very close to unity, and for x > 1, τyy/τ0 possesses finite
values diminishing from a maximum value at x = 1 to zero at x = ∞. Since a/[2β(1 − b)] >
1/100 represents a crack length of less than 100 atomic distances as stated by Eringen [24],
and for such tiny cracks other serious questions arise regarding the interatomic arrangements
and force laws, we do not pursue solutions for such small crack sizes. The dynamic stress is
computed numerically for the Lame constants λ = 98 × 109(N/m2), µ = 77 × 109(N/m2),
ρ = 7·7 × 103(kg/m3). The semi-infinite numerical integrals are evaluated easily by the Filon
and Simpson methods because of the rapid diminution of the integrands.

7. Discussion

The aim of the present paper was to study the application of the non-local theory in fracture
mechanics. The other aim of the present paper was to show that the Schmidt method can be
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Figure 9. The variation of the stress along the crack line for a/(2β) = 0·0008, b = 0·1, ω/c2 = 1·0.

Figure 10. The variation of the stress along the crack line for a/(2β) = 0·0008, b = 0·5, ω/c2 = 1·0.

Figure 11. The variation of the stress along the crack line for for a/(2β) = 0·0015, b = 0·3, ω/c2 = 1·0.
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used to solve this kind of the triple (dual) integral equation and that the limit of the kernel is not
a constant. This method is more exact and more appropriate than that put forward by Eringen
for solving this kind of problem. Contrary to the classical-theory solution, it was found that
no stress singularity is present at the crack tip and the stress is finite there. Furthermore, the
effects of the geometry of the interacting cracks, the frequency of the incident wave and the
lattice parameter upon the dynamic stress field of the crack were examined, i.e. the dynamic
perturbation stress field depends on the geometry of the cracks, the frequency of the incident
wave and the lattice parameter. So the perturbation stress field can be obtained by the geometry
of the cracks, the frequency of the incident wave and the lattice parameter from the results in
this paper. In this paper, we only made an attempt to relate our formulation to a problem in a
lattice structure. However, there are many problems that should be investigated in future work
on non-local theory. For example, the choice of the influence function α should be further
studied to satisfy the realistic condition, the practical value of the maximum stress near the
crack tips should be measured by experiments, and so on. However, the application of non-
local theory is very limited since the basic equations of non-local theory are complex. The
results are plotted in Figures 2–11. From the results the following observations can be made:

(i) The method used in this paper can overcome the mathematical difficulties that occur in
Eringen’s papers [22–25], i.e. the Schmidt method can be used to solve this kind of the triple
(dual) integral equation where the limit of the kernel is not a constant. The results are more
accurate than those of Eringen. The method is more appropriate than Eringen’s.

(ii) The maximum stress does not occur at the crack tip, but slightly away from it. This
phenomenon was thoroughly substantiated by Eringen [40]. The maximum stress is finite.
The distance between the crack tip and the maximum stress point is very small. This distance
depends on the lattice parameter, the crack length and the circular frequency of the incident
wave. Contrary to the classical-elasticity solution, it is found that no stress singularity is
present at the crack tip, and also that the present results converge to the classical ones for
positions far away from the crack tip as shown in Figures 7–11. This enabled us to employ the
maximum-stress hypothesis to deal with the engineering fracture problem in a natural way.
The maximum-stress fracture criterion is more exact than ‘the stress intensity factor’ criterion
of the classical theory.

(iii) The normal stress at the crack tip becomes infinite when the atomic distance a → 0.
This is the classical continuum limit of square-root singularity.

(iv) For a/β = constant, i.e. the atomic distance does not change, the value of the dynamic
stress concentrations (at the crack tip) increases with an increase of the crack length. Experi-
ments indicate that materials with smaller cracks are more resistant to fracture than those with
larger cracks.

(v) The significance of this result is that the fracture criteria are unified at both macroscopic
and microscopic scales.

(vi) The tip stress at the left tip is greater than that at the right tip for the right crack. The
stress on the crack line decreases with increasing distance between two cracks as shown in
Figure 2, Figure 3 and Figure 5.

(vii) The present solution will revert to the classical one for α(
∣∣X′ −X

∣∣) = δ(
∣∣X′ −X

∣∣).
(viii) The dynamic stress at the crack tips tends to increase with frequency, reaches a peak

and then decreases in magnitude. It can be shown that the stresses at the crack tips show a
maximum value near a certain frequency. So the stress field can reach its minimum value by
changing the frequency of the incident wave, the lattice parameter and the length of the crack.
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(ix) The results in Figures 2–11 reflect the influence of the lattice parameter on the per-
turbation stress field near the crack tips for various materials, i.e. the perturbation stress field
increases for a decreasing value of the lattice parameter. So we can predict the influence of
the crack on the stress distribution of the materials according to the lattice parameter.
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